For all questions, answer choice "(E) NOTA" means that none of the given answers is correct. In addition, $i^2 = -1$. The domain of all functions is assumed to be \mathbb{C} unless stated otherwise. Unless instructed otherwise, assume the principal values for arguments of complex numbers. Good luck and have fun!

1. What is $(1 + i)^{20} + (1 - i)^{18}$? (A) 2048 - 1024i (B) -1024 - 512i (C) 1024 + 512i (D) -1024 + 1024i (E) NOTA

2. What is
$$\frac{3-2i}{1+i} + \frac{2+i}{4+5i}$$
?
(A) $\frac{67-217i}{82}$ (B) $\frac{48-27i}{82}$ (C) $\frac{7+2i}{82}$ (D) $\frac{23-38i}{82}$ (E) NOTA

3. What is
$$|(3 - 4i)(5 + 12i)(24 + 7i)|$$
?(A) 1325(B) 1525(C) 1425(D) 1625(E) NOTA

4. What is
$$(1 + i\sqrt{3})^{10}$$
?
(A) 1024 (B) $-1024 - 1024i\sqrt{3}$ (C) $512 - 512i\sqrt{3}$ (D) $-512 - 512i\sqrt{3}$ (E) NOTA

5. What is the resulting vector when (3, 5) is rotated by $\frac{\pi}{4}$ counterclockwise? (A) $\langle -\sqrt{2}, 4\sqrt{2} \rangle$ (B) $\langle -3\sqrt{2}, 5\sqrt{2} \rangle$ (C) $\langle -\sqrt{2}, 2\sqrt{2} \rangle$ (D) $\langle -2\sqrt{2}, 8\sqrt{2} \rangle$ (E) NOTA

6. If $2z_1 + z_2 = 5 + 4i$ and $3z_1 - 2z_2 = 4 - i$, then what is the value of $|z_1 + z_2|$? (A) $2\sqrt{3}$ (B) $3\sqrt{2}$ (C) $\sqrt{6}$ (D) 6 (E) NOTA

7. What is the polar form of $\frac{12}{3-i\sqrt{3}}$? (A) $4\operatorname{cis}\left(\frac{\pi}{3}\right)$ (B) $2\sqrt{3}\operatorname{cis}\left(\frac{\pi}{6}\right)$ (C) $3\operatorname{cis}\left(\frac{2\pi}{3}\right)$ (D) $4\operatorname{cis}\left(\frac{5\pi}{6}\right)$ (E) NOTA

8. Sequence a_n is given by $a_0 = i$ and $a_{n+1} = a_n^2 + a_n$ for $n \ge 0$. Find a_{100} . (A) -1 + i (B) i (C) 1 + i (D) -1 - i (E) NOTA

9. f(x) is a quadratic equation with real coefficients and leading coefficient 1. Given that f(6-2i) = 0, what is the value of f(8)?

(A) 4 (B) 2 (C) 8 (D) 16 (E) NOTA

10. What is the graph formed by the set of complex numbers on the Argand plane that satisfy the equation $z\bar{z} = 1$? (A) Line (B) Parabola (C) Hyperbola (D) Circle (E) NOTA

11. What is a_{2018} if $a_0 = a_1 = i$ and $a_n = a_{n-1}a_{n-2}$ for $n \ge 2$? (A) i (B) -1 (C) -i (D) 1 (E) NOTA

12. For how many integers *n* does the graph of $f(x) = x^2 + nx + n$ not intersect the *x*-axis? (A) 2 (B) 3 (C) 4 (D) 5 (E) NOTA

13. z is a complex number with integral real and imaginary parts. Which of the
following is not a possible value of $z \cdot \overline{z}$?(A) 2018(B) 2020(C) 2017(D) 2019(E) NOTA

14. Given that $z^2 + 8 - 6i = 0$, what is the value of $|z - \bar{z}| + |z + \bar{z}|$?(A) 4(B) 8(C) 12(D) 16(E) NOTA

15. What is the area of the polygon on the complex plane with vertices that are the roots of $f(x) = 4x^4 - 16x^3 + 24x^2 - 16x + 13$? (A) 9 (B) 7 (C) 5 (D) 3 (E) NOTA

Page 2

Alpha Complex Numbers

16. What is the value of
$$\sqrt{3 + i2\sqrt{3}\sqrt{3 + i2\sqrt{3}\sqrt{3 + ...}}}$$

(A) $i\sqrt{7}$ (B) $\frac{3}{4} + \frac{i\sqrt{3}}{5}$ (C) $\frac{3i}{5}$ (D) 1 (E) NOTA

17. What is
$$(\sqrt{i})^{i}$$
?
(A) $e^{-\frac{\pi}{2}}$ (B) $e^{-\frac{\pi}{4}}$ (C) $e^{\frac{\pi}{4}}$ (D) $e^{\frac{\pi}{2}}$ (E) NOTA

18. What is
$$\prod_{n=1}^{360} (\operatorname{cis}(n^{\circ}))^{360-n}$$
?
(A) i (B) $\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}$ (C) $\frac{1}{2} + \frac{i\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{2} - \frac{i}{2}$ (E) NOTA

19. Let a_n be a geometric sequence with $a_0 = 1$ and ratio $r = \operatorname{cis}(k)$. For how many $0^\circ \le k \le 360^\circ$ is it true that the smallest m > 0 such that $a_m = 1$ is m = 360?(A) 120(B) 150(C) 180(D) 210(E) NOTA

20. Mr. Lu is walking along the complex plane according to the following rules: he starts at the origin facing towards the positive real axis, then for every n^{th} move, he moves n units forward and then turns $\frac{\pi}{2}$ radians to the left. After 2018 moves, where is Mr. Lu on the complex plane?

(A) -1009 - 1009*i* (B) 1009 + 1010*i* (C) 2018 - 2019*i* (D) 2017 + 2017*i* (E) NOTA

21. What is
$$\cos(72^\circ) + \cos(144^\circ)$$
?
(A) 0
(B) $-\frac{\sqrt{3}}{6}$
(C) $-\frac{1}{2}$
(D) $-\frac{\sqrt{5}}{4}$
(E) NOTA

22. What is $cos(4\theta)$ when expressed as a function of $cos(\theta)$ only? (A) $cos^4(\theta) - cos^2(\theta)$ (B) $8cos^4(\theta) - 8cos^2(\theta) + 1$

(C) $4\cos^4(\theta) - 1$ (D) $\cos^4(\theta)$ (E) NOTA

23. What quadrant is
$$(2017 - 2018i)^{50}$$
 in?
(A) IV (B) III (C) II (D) I (E) NOTA

24. What is the distance between the foci of the conic $13x^2 + 10xy + 13y^2 = 72$? (A) 2 (B) $2\sqrt{3}$ (C) $2\sqrt{5}$ (D) $2\sqrt{7}$ (E) NOTA

25. Zhao is at $P_0 = 13 + 84i$ and wishes to walk back to his home at the origin. He takes a puzzling route $P_0P_1, P_1P_2, P_2P_3, ...$, where $P_n = \left(\frac{1}{2} + \frac{1}{2}i\right)P_{n-1}$. What is the distance that Zhao must walk before he reaches his home? (A) $\frac{85\sqrt{2}}{2}$ (B) $85\sqrt{3} + 85$ (C) $85\sqrt{2} + 85$ (D) $85\sqrt{6} - 85$ (E) NOTA

26. What is the coefficient of the x^4 term in the expression $(ix + 2)^8$? (A) 1120 (B) -560i (C) 780*i* (D) -1120 (E) NOTA

27. For how many positive integers
$$n$$
 is $|18 + ni|$ an integer?
(A) 2 (B) 3 (C) 4 (D) 5 (E) NOTA

28. Suppose that $P_1 = z$, $P_2 = 2z^2$, and $P_3 = -3z^3$ are the vertices of an isosceles triangle on the complex plane with equal sides $\overline{P_1P_2}$ and $\overline{P_2P_3}$. The graph of all such z forms a closed shape with area A. What is [A]? (A) 8 (B) 1 (C) 7 (D) 3 (E) NOTA

Page 4

29. Function $f: [-1,1) \to \mathbb{C}$ has the properties that it is one-to-one, f(-1) = -1, and f(a)f(b) = f(a+b) for all $a, b, a+b \in [-1,1)$. What is $f\left(\frac{2}{3}\right) + f\left(-\frac{2}{3}\right)$? (A) 1 (B) i (C) -1 (D) -i (E) NOTA

30. Ben and David are playing a game in which they take turns selecting four numbers k_1, k_2, k_3, k_4 from the set {0,1}, randomly and with replacement. They then each determine their value $|i^{k_1} + i^{k_2} + i^{k_3} + i^{k_4}|$. If their magnitudes are equal, then Ben wins! What is the probability that Ben wins?

(A)
$$\frac{3}{8}$$
 (B) $\frac{25}{64}$ (C) $\frac{13}{32}$ (D) $\frac{7}{16}$ (E) NOTA