2016 – 2017 Log1 Contest Round 2 Theta Logs and Exponents

Name: _____

	4 points each	
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$	
2	Evaluate: $\log_5 40 - \log_5 8$	
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$ Leave your answer as an improper fraction.	
4	Solve for x: $\log_{37}(\log_2(\log_{12}x)) = 0$	
5	Solve for z: $z = \log_{\log_{\log_{27}27}27} 27$	

	5 points each	
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$	
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$	
8	Express $\log(1228)$ in terms of a and b given that $\log(307) = a$ and $\log(625) = b$.	
	Any term that does not contain a or b must be expressed as an integer or fraction.	
9	Solve for x: $-15 = -8\ln(3x) + 7$	
10	Solve for x and express your answer in root form.	
	$x^{x^{x^{x^{\cdots}}}} = 5$	

	6 points each	
11	Solve for x and express your answer in root form.	
	$(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$	
12	A population of ants follows an increasing, exponential growth model, multiplying by	
	a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population	
	after 4 days? Note that there are no such things as "fractions of an ant" when talking	
	about population growth.	
13	Solve for x in terms of a .	
	$2\log_b x = 2\log_b(1-a) + 2\log_b(1+a) - \log_b\left(\frac{1}{a} - a\right)^2$	
14	Solve for x:	
	$\frac{49*7^{-2x+6}}{343^{4x}} = 49^{x-4}$	
15	Evaluates log $(\sqrt[3]{2}, \sqrt[9]{2}, \frac{27}{2})$	
	Evaluate: $\log_{81}(\sqrt[3]{3} \cdot \sqrt[9]{3} \cdot \sqrt[27]{3} \cdots)$	
I		

2016 – 2017 Log1 Contest Round 2 Alpha Logs and Exponents

Name: _____

	4 points each		
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$		
2	Evaluate: $\log_5 40 - \log_5 8$		
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$ Leave your answer as an improper fraction.		
4	Which of the following is smaller, 3 ²⁰ or 6 ¹² ?		
5	Solve for z: $z = \log_{\log_{\log_{027}27}27} 27$		

	5 points each		
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$		
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$		
8	Express $\log(1228)$ in terms of a and b given that $\log(307) = a$ and $\log(625) = b$. Any term that does not contain a or b must be expressed as an integer or fraction.		
9	Solve for x: $log(x) - 1 = -log(x - 9)$		
10	Solve for x and express your answer in root form. $x^{x^{x^{x^{-}}}} = 5$		

	6 points each	
11	Solve for x and express your answer in root form.	
	$(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$	
12	A population of ants follows an increasing, exponential growth model, multiplying by	
	a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population	
	after 4 days? Note that there are no such things as "fractions of an ant" when talking	
	about population growth.	
13	Solve for x in terms of a .	
	$2\log_b x = 2\log_b(1-a) + 2\log_b(1+a) - \log_b\left(\frac{1}{a} - a\right)^2$	
14	Evaluate:	
	$\frac{\log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}}{\log_2 \sqrt[4]{64} + \log_e e^{-10}}$	
	$\log_2 \sqrt[4]{64} + \log_e e^{-10}$	
15	Evaluate: $\log_{81}(\sqrt[3]{3} \cdot \sqrt[9]{3} \cdot \sqrt[27]{3} \cdots)$	

2016 – 2017 Log1 Contest Round 2 Mu Logs and Exponents

Name: _____

	4 points each	
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$	
2	Evaluate: $\log_5 40 - \log_5 8$	
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$	
	Leave your answer as an improper fraction.	
4	Which of the following is smaller, 3^{20} or 6^{12} ?	
5	Find the y-value of the point on the curve	
	$y = \int \ln(x) dx$ when $x = 3$, given that when $x = 1$, $y = 8$	

	5 points each	
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$	
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$	
8	Express $\log(1228)$ in terms of a and b given that $\log(307) = a$ and $\log(625) = b$.	
	Any term that does not contain a or b must be expressed as an integer or fraction.	
9	Solve for x: $log(x) - 1 = -log(x - 9)$	
10	Evaluate: $\log_3(\int_0^4 3^x \ln(3) dx + 1)$	

	6 points each	
11	Solve for x and express your answer in root form.	
	$(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$	
12	A population of ants follows an increasing, exponential growth model, multiplying by	
	a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population	
	after 4 days? Note that there are no such things as "fractions of an ant" when talking	
	about population growth.	
13	Solve for x in terms of a .	
	$2\log_b x = 2\log_b(1-a) + 2\log_b(1+a) - \log_b\left(\frac{1}{a} - a\right)^2$	
14	Evaluate:	
	$\log_2 \sqrt{243\sqrt{81\sqrt[3]{3}}}$	
	$\frac{\log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}}{\log_2 \sqrt[4]{64} + \log_e e^{-10}}$	
15	Given that $f(x) = \ln e^{2\ln e^{(\frac{3}{x})\ln e^{\sqrt{x}}}}$ evaluate the derivative of $f(x)$ at $x = 2$. That is, find	
	f'(2)	

2016 – 2017 Log1 Contest Round 2 Theta Logs and Exponents – Answer Key

Name: _____

	4 points each	
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$	$\log_2\left(\frac{1}{8}\right) = -3$
2	Evaluate: $\log_5 40 - \log_5 8$	1
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$ Leave your answer as an improper fraction.	$\frac{7}{2}$
4	Solve for x: $\log_{37}(\log_2(\log_{12}x)) = 0$	144
5	Solve for z: $z = \log_{\log_{\log 27} 27} 27$	3

	5 points each	
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$	3
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$	$\frac{1}{4}$
8	Express $\log(1228)$ in terms of a and b given that $\log(307) = a$ and $\log(625) = b$. Any term that does not contain a or b must be expressed as an integer or fraction.	$a-\frac{b}{2}+2$
9	Solve for x: $-15 = -8\ln(3x) + 7$	$\frac{1}{3}e^{\frac{11}{4}}$
10	Solve for x and express your answer in root form. $x^{x^{x^{x^{}}}} = 5$	5√5

	6 points each		
11	Solve for x and express your answer in root form.	$4\sqrt[3]{4}$	
	$(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$		
12	A population of ants follows an increasing, exponential growth model, multiplying by	390	
	a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population		
	after 4 days? Note that there are no such things as "fractions of an ant" when talking		
	about population growth.		
13	Solve for x in terms of a .	x = a	
	$2\log_b x = 2\log_b(1-a) + 2\log_b(1+a) - \log_b\left(\frac{1}{a} - a\right)^2$		
14	Solve for x:	1	
	$\frac{49*7^{-2x+6}}{343^{4x}} = 49^{x-4}$		
	343 ⁴ <i>x</i>		
15	Evaluate: $\log_{81}(\sqrt[3]{3} \cdot \sqrt[9]{3} \cdot \sqrt[27]{3} \cdots)$	$\frac{1}{8}$	
		8	

2016 – 2017 Log1 Contest Round 2 Alpha Logs and Exponents – Answer Key

Name: _____

	4 points each	
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$	$\log_2\left(\frac{1}{8}\right) = -3$
2	Evaluate: log ₅ 40- log ₅ 8	1
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$ Leave your answer as an improper fraction.	$\frac{7}{2}$
4	Which of the following is smaller, 3 ²⁰ or 6 ¹² ?	6 ¹²
5	Solve for z: $z = \log_{\log_{\log 27} 27} 27$	3

	5 points each				
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$	3			
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$	$\frac{1}{4}$			
8	Express log(1228) in terms of a and b given that	$a - \frac{b}{2} + 2$			
	$\log (307) = a$ and $\log (625) = b$. Any term that does not contain a or b must be	Z			
	expressed as an integer or fraction.				
9	Solve for x: $log(x) - 1 = -log(x - 9)$	10			
10	Solve for x and express your answer in root form.	5√5			
	$x^{x^{x^{x^{\cdots}}}} = 5$				

	6 points each					
11	Solve for x and express your answer in root form. $(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$	$4\sqrt[3]{4}$				
12	A population of ants follows an increasing, exponential growth model, multiplying by a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population after 4 days? Note that there are no such things as "fractions of an ant" when talking about population growth.	390				
13	Solve for x in terms of a . $2 \log_b x = 2 \log_b (1-a) + 2 \log_b (1+a) - \log_b \left(\frac{1}{a} - a\right)^2$	x = a				
14	Evaluate: $ \frac{\log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}}{\log_2 \sqrt[4]{64} + \log_e e^{-10}} $	$-\frac{43}{102}$				
15	Evaluate: $\log_{81}(\sqrt[3]{3} \cdot \sqrt[9]{3} \cdot \sqrt[27]{3} \cdots)$	$\frac{1}{8}$				

2016 – 2017 Log1 Contest Round 2 Mu Logs and Exponents – Answer Key

Name: _____

	4 points each				
1	Write in logarithmic form: $2^{-3} = \frac{1}{8}$	$\log_2\left(\frac{1}{8}\right) = -3$			
2	Evaluate: $\log_5 40 - \log_5 8$	1			
3	Simplify the expression $\log_6 216 + \frac{(\log 42 - \log 6)}{\log 49}$ Leave your answer as an improper fraction.	$\frac{7}{2}$			
4	Which of the following is smaller, 3 ²⁰ or 6 ¹² ?	612			
5	Find the y-value of the point on the curve	$3\ln(3) + 6$			
	$y = \int \ln(x) dx$ when $x = 3$, given that when $x = 1$, $y = 8$				

	5 points each				
6	Find the last digit in the sum of $2^{2016} + 7^{2017}$	3			
7	Evaluate: $\log_9(8) \cdot \log_{10}(9) \cdot \log_{11}(10) \cdots \log_{4096}(4095)$	$\frac{1}{4}$			
8	Express $\log(1228)$ in terms of a and b given that $\log(307) = a$ and $\log(625) = b$. Any term that does not contain a or b must be expressed as an integer or fraction.	$a-\frac{b}{2}+2$			
9	Solve for x: $log(x) - 1 = -log(x - 9)$	10			
10	Evaluate: $\log_3(\int_0^4 3^x \ln(3) dx + 1)$	4			

	6 points each				
11	Solve for x and express your answer in root form. $(36\sqrt{3})^8 = 108^4 (\sqrt{6})^{(\sqrt{x})^3}$	4∛4			
12	A population of ants follows an increasing, exponential growth model, multiplying by a factor of $15\frac{5}{8}$ every 3 days. If the initial population was 10, what is the population after 4 days? Note that there are no such things as "fractions of an ant" when talking about population growth.	390			
13	Solve for x in terms of a . $2 \log_b x = 2 \log_b (1-a) + 2 \log_b (1+a) - \log_b \left(\frac{1}{a} - a\right)^2$	x = a			
14	Evaluate: $\frac{\log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}}{\log_2 \sqrt[4]{64} + \log_e e^{-10}}$	$-\frac{43}{102}$			
15	Given that $f(x) = \ln e^{2\ln e^{\left(\frac{3}{x}\right)\ln e^{\sqrt{x}}}}$ evaluate the derivative of $f(x)$ at $x = 2$. That is, find f'(2)	$-\frac{3}{4}\sqrt{2}$			

2016 – 2017 Log1 Contest Round 2 Logs and Exponents Solutions

Mu	Al	Th	Solution
1	1	1	If $a = b^c$, then $\log_b a = c$.
			Therefore, the logarithmic form of $2^{-3} = \frac{1}{8}$ is $\log_2\left(\frac{1}{8}\right) = -3$
2	2	2	Since the quotient of two logs is the difference of the logs:
			$\log_5 40 - \log_5 8 = \log_5 \frac{40}{8} = \log_5 5 = 1$
3	3	3	$3 + \frac{\log(7)}{2\log(7)} = \frac{7}{2}$
4	4		$3^{12}3^{8}$ compared to $3^{12}2^{12}$ Factor out 3^{12} $(3^{2})^{4}$ compared to $(2^{3})^{4}$ 9 > 8 Therefore, $3^{20} > 6^{12}$
		4	Since the log expression is equal to 0, it must be true that $\log_2(\log_{12} x) = 1$. If this is to be true as well, then $\log_{12} x = 2$. In exponential form, this is $x = 12^2 = 144$
5			$\int \ln(x)dx = x(\ln(x) - 1) + C$ 8 = 1(ln(1) - 1) + C, ln(1) = 0 y = x(ln(x) - 1) + 9 y = 3ln(3) + 6 when x = 3
	5	5	$z = \log_z 27$ $z = 3$

C	C	c	Fourthe have 2 numbers the last digit follows the service 2.40 C. Thus such as for
6	6	6	For the base-2 number, the last digit follows the sequence 2,4,8,6. Thus every power of 4
			for a base of 2 ends in 6. The next one is a 2. 2016 is a multiple of 4 so 2^{2016} ends in a 6.
			For the base-7 number, the last digit follows the sequence 7,9,3,1. This parallels the base-
			2 number sequence so 7^{2017} ends in a 7. Since 6 + 7 = 13, the last digit in the sum is 3.
7	7	7	$\log_9 8 = \frac{\log 8}{\log 9}$
			$\log_{10} 9 = \frac{\log 9}{\log 10}$
			$\log_{4096} 4095 = \frac{\log 4095}{\log 4096}$
			With the above change of bases, carrying out the multiplication sequence stated in the
			problem reduces the expression to
			$\frac{\log 8}{\log 4096} = \frac{\log 8}{\log 8^4} = \frac{\log 8}{4\log 8} = \frac{1}{4}$
			$\log 4096 \log 8^4 4\log 8 4$
8	8	8	$\log(1228) = \log(307 * 4)$
			$\log(1228) = \log(307) + \log(4)$
			$\log(1228) = a + \log\left(\frac{2500}{625}\right)$
			$\log(1228) = a + \log(2500) - \log(625)$
			log(1228) = a + log(25) + log(100) - b
			$\log(1228) = a + \log(625)^{\frac{1}{2}} + 2 - b$
			$\log(1228) = a + \frac{1}{2}\log(625) - b + 2$
			$\log(1228) = a + \frac{1}{2}b - b + 2$
			$\log(1228) = a - \frac{b}{2} + 2$
9	9		$\log x + \log(x - 9) = 1$
			$\log(x(x - 9)) = 1$
			$x(x - 9) = 10^1 = 10$
			$x^2 - 9x - 10 = 0$
			(x-10)(x+1) = 0
			x = 10 (positive roots only)

		9	$-15 = -8\ln(3x) + 7$ $-22 = -8\ln(3x)$ $\frac{11}{4} = \ln(3x)$ $e^{\frac{11}{4}} = 3x$ $x = \frac{1}{3}e^{\frac{11}{4}}$
10			$1 + \int_{0}^{4} 3^{x} \ln 3 dx = 1 + (3^{4} - 3^{0}) = 81$ $\log_{3} 81 = 4$
	10	10	$x^{x^{x^{x^{\cdots}}}} = 5$ $x = 5^{\frac{1}{5}}, \sqrt[5]{5}$
11	11	11	$\left(2 * 2 * 3 * 3 * 3^{\frac{1}{2}}\right)^{8} = (2 * 3 * 3 * 6)^{4} \left(6^{\frac{1}{2}}\right)^{x^{\frac{3}{2}}}$ $\left(6^{2} * 3^{\frac{1}{2}}\right)^{8} = (6^{2} * 3)^{4} \left(6^{\frac{1}{2}}\right)^{x^{\frac{3}{2}}}$ $6^{16}3^{4} = 6^{8}3^{4} \left(6^{\frac{1}{2}}\right)^{x^{\frac{3}{2}}} \to 6^{8} = 6^{\frac{1}{2}x^{\frac{3}{2}}} \to 8 = \frac{1}{2}x^{\frac{3}{2}}$ $16 = x^{\frac{3}{2}} \to 256 = x^{3} \to x = 4^{3}\sqrt{4}$
12	12	12	Population is equal to $10(15.625^{t})$, where t is equal to 3 days. To find the population after 4 days, divide 4 by 3. Pop = $10\left(15.625^{\frac{4}{3}}\right) = 10\left(15.625^{\frac{1}{3}}\right)^{4}$ Pop = $10(2.5^{4}) = 10\left(\frac{5}{2}\right)^{4} = 10\left(\frac{625}{16}\right) = 390\frac{5}{8}$ Since "fractions of an ant" don't exist, the population is 390

13	13	13	Simplifying:
			$2\log_b x = 2\log_b((1-a^2) - \log_b\left(\frac{1}{a} - a\right)^2$
			$2\log_b x = 2\log_b((1-a^2) - 2\log_b\left(\frac{1-a^2}{a}\right)$
			$2 \log_b x = 2 \log_b \left(\frac{1 - a^2}{\frac{1 - a^2}{a}} \right) = 2 \log_b a$
			x = a
			By inspection, it is implied that a is restricted to $-1 < a < +1$ AND $a \neq 0$. However,
			accept x = a as a correct answer.
14	14		$Let \ a = \log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}$
			$a = \log_3 \sqrt{3^5 * 3^2 * 3^{\frac{1}{6}}} = \log_3 \left(3^{\frac{43}{6}}\right)^{\frac{1}{2}}$
			$a = \log_3 3^{\frac{43}{12}}$
			$a = \frac{43}{12}$
			Let $b = \log_2 \sqrt[4]{64} + \log_e e^{-10}$
			$b = \log_2(2^6)^{\frac{1}{4}} - 10 = \frac{3}{2} - 10$
			$b = -8\frac{1}{2}$
			Therefore, $\frac{a}{b} = -\frac{43}{102}$
		14	$7^2 7^{(-2x+6)} (7^3)^{-4x} = (7^2)^{x-4}$
		14	$7^{2} - 2x + 6 - 12x = 7^{2x - 8}$
			8 - 14x = 2x - 8
			-16x = -16
			x = 1

15			$f(x) = \ln e^{2\ln e^{\left(\frac{3}{x}\right)\ln e^{\sqrt{x}}}} = 2\ln e^{\left(\frac{3}{x}\right)\ln e^{\sqrt{x}}}$
			$f(x) = 2\left(\left(\frac{3}{x}\right)\ln e^{\sqrt{x}}\right) = 6\left(\frac{1}{x}\right)\sqrt{x} = 6x^{-\frac{1}{2}}$
			$f'(x) = -3x^{-\frac{3}{2}}$
			$f'(2) = -3(2)^{-\frac{3}{2}} = -3(8)^{-\frac{1}{2}} = -\frac{3}{2\sqrt{2}}$
			$f'(2) = -\frac{3}{4}\sqrt{2}$
	15	15	$\log_{81}3^{(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\cdots)}$
			$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} \dots = \frac{1}{2}$
			$\log_{81} 3^{\frac{1}{2}} = \frac{1}{8}$