2013 – 2014 Log1 Contest Round 2 Theta Complex Numbers

1	4 points each		
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$		
2	Write in $a + bi$ form: $(-1+i)(3+5i)(2-i)$		
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$		
4	Evaluate: -65+72 <i>i</i>		
5	Determine if the following statement is always, sometimes, or never true (you may just write "always", "sometimes", or "never" as your answer): "The sum of two real numbers is a complex number."		

	5 points each		
6	What is the sum of the magnitudes of the eight complex solutions of the equation		
	$x^8 = 1?$		
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$		
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals		
	the sum of the other two roots. Find the complex root of f whose imaginary part is positive.		
9	For complex number $z=2-3i$, find the value of $z \cdot \overline{z}$.		
10	Find the distance between the complex numbers $-2+i$ and $3+5i$ in the Argand plane.		

	6 points each		
11	Write in <i>a</i> + <i>bi</i> form: $\frac{(1+i)^{17}}{(1-i)^{16}}$		
12	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.		
13	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.		
14	Write in $a + bi$ form: $\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{2014}$		
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .		

2013 – 2014 Log1 Contest Round 2 Alpha Complex Numbers

	4 points each		
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$		
2	Write in $a + bi$ form: $(-1+i)(3+5i)(2-i)$		
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$		
4	Evaluate: $ -65+72i $		
5	Determine if the following statement is always, sometimes, or never true (you may just write "always", "sometimes", or "never" as your answer): "The sum of two real numbers is a complex number."		

1	5 points each		
6	What is the sum of the magnitudes of the eight complex solutions of the equation $x^8 = 1.2$		
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$		
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals the sum of the other two roots. Find the complex root of <i>f</i> whose imaginary part is positive.		
9	Find the rectangular form of the complex number with polar form $-2cis\left(-\frac{\pi}{3}\right)$.		
10	Write in <i>a</i> + <i>bi</i> form: $\frac{(1+i)^{17}}{(1-i)^{16}}$		

	6 points each		
11	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.		
12	Consider the set $\{1, -1, i, -i\}$. The reciprocal of one element of the set equals the conjugate of a different element of the set for how many elements in the set?		
13	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.		
14	Write in $a + bi$ form: $\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{2014}$		
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .		

2013 – 2014 Log1 Contest Round 2 Mu Complex Numbers

	4 points each		
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$		
2	Write in $a + bi$ form: $(-1+i)(3+5i)(2-i)$		
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$		
4	Evaluate: $\left -65+72i\right $		
5	Using Euler's Formula, find the value of $cos(i)-isin(i)$, where <i>i</i> is the imaginary unit.		

	5 points each		
6	What is the sum of the magnitudes of the eight complex solutions of the equation $x^8 = 1$?		
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$		
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals		
	the sum of the other two roots. Find the complex root of f whose imaginary part is positive.		
9	Find the rectangular form of the complex number with polar form $-2cis\left(-\frac{\pi}{3}\right)$.		
10	Write in <i>a</i> + <i>bi</i> form: $\frac{(1+i)^{17}}{(1-i)^{16}}$		

	6 points each		
11	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.		
12	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.		
13	Consider the complex numbers that are solutions to the equation $x^n = 1$, where <i>n</i> is a positive integer satisfying $n \ge 3$. If the solutions are plotted in the Argand plane, and if those solutions are the vertices of a regular polygon whose enclosed area is A_n , find the value of $\lim_{n\to\infty} A_n$.		
14	Write in $a+bi$ form: $\left(\frac{\sqrt{6}+\sqrt{2}}{4}+\frac{\sqrt{6}-\sqrt{2}}{4}i\right)^{2014}$		
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .		

2013 – 2014 Log1 Contest Round 2 Theta Complex Numbers

	4 points each		
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$	7 <i>i</i>	
2	Write in $a + bi$ form: $(-1+i)(3+5i)(2-i)$	-18 + 4i	
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$	$\frac{7}{34} - \frac{29}{68}i$	
4	Evaluate: -65+72 <i>i</i>	97	
5	Determine if the following statement is always, sometimes, or never true (you may just write "always", "sometimes", or "never" as your answer): "The sum of two real numbers is a complex number."	always	

	5 points each		
6	What is the sum of the magnitudes of the eight complex solutions of the equation	8	
	$x^8 = 1?$		
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$	-1	
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals	-3+i	
	the sum of the other two roots. Find the complex root of f whose imaginary part is positive.		
9	For complex number $z=2-3i$, find the value of $z \cdot \overline{z}$.	13	
10	Find the distance between the complex numbers $-2+i$ and $3+5i$ in the Argand plane.	$\sqrt{41}$	

	6 points each		
11	Write in <i>a</i> + <i>bi</i> form: $\frac{(1+i)^{17}}{(1-i)^{16}}$	1+ <i>i</i>	
12	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.	816	
13	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.	2- <i>i</i> , 3+2 <i>i</i>	
14	Write in $a + bi$ form: $\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{2014}$	$\frac{\sqrt{3}}{2} - \frac{1}{2}i$	
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .	2	

2013 – 2014 Log1 Contest Round 2 Alpha Complex Numbers

	4 points each			
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$	7 <i>i</i>		
2	Write in $a + bi$ form: $(-1+i)(3+5i)(2-i)$	-18+4i		
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$	$\frac{7}{34} - \frac{29}{68}i$		
4	Evaluate: $ -65+72i $	97		
5	Determine if the following statement is always, sometimes, or never true (you may just write "always", "sometimes", or "never" as your answer): "The sum of two real numbers is a complex number."	always		

	5 points each	
6	What is the sum of the magnitudes of the eight complex solutions of the equation	8
	$x^8 = 1?$	
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$	-1
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals	-3+i
	the sum of the other two roots. Find the complex root of f whose imaginary part is positive.	
9	Find the rectangular form of the complex number with polar form $-2cis\left(-\frac{\pi}{3}\right)$.	$-1+\sqrt{3}i$
10	Write in <i>a</i> + <i>bi</i> form: $\frac{(1+i)^{17}}{(1-i)^{16}}$	1+ <i>i</i>

	6 points each	
11	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.	816
12	Consider the set $\{1,-1,i,-i\}$. The reciprocal of one element of the set equals the conjugate of a different element of the set for how many elements in the set?	0
13	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.	2– <i>i</i> , 3+2 <i>i</i>
14	Write in $a + bi$ form: $\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{2014}$	$\frac{\sqrt{3}}{2} - \frac{1}{2}i$
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .	2

2013 – 2014 Log1 Contest Round 2 Mu Complex Numbers

	4 points each			
1	Write in $a+bi$ form: $(-1+i)+(3+5i)-(2-i)$	7 <i>i</i>		
2	Write in $a+bi$ form: $(-1+i)(3+5i)(2-i)$	-18+4i		
3	Write in $a+bi$ form: $\frac{6+5i}{-4+16i}$	$\frac{7}{34} - \frac{29}{68}i$		
4	Evaluate: -65+72 <i>i</i>	97		
5	Using Euler's Formula, find the value of $cos(i)-isin(i)$, where <i>i</i> is the imaginary unit.	е		

5 points each		
6	What is the sum of the magnitudes of the eight complex solutions of the equation $y^8 = 1.2$	8
	X =1:	
7	Simplify: $\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}}$	-1
8	For the polynomial $f(x) = x^3 + 12x^2 + bx + 60$, where <i>b</i> is real, one of the roots equals	-3+i
	the sum of the other two roots. Find the complex root of f whose imaginary part is positive.	
9	Find the rectangular form of the complex number with polar form $-2cis\left(-\frac{\pi}{3}\right)$.	$-1+\sqrt{3}i$
10	Write in $a+bi$ form: $\frac{(1+i)^{17}}{(1-i)^{16}}$	1+ <i>i</i>

	6 points each		
11	Find the sum of all positive integers $n < 100$ such that $(\sqrt{3} - i)^n$ is a real number.	816	
12	Find all complex solutions to the equation $ix^2 + (1-5i)x - 1 + 8i = 0$.	2- <i>i</i> , 3+2 <i>i</i>	
13	Consider the complex numbers that are solutions to the equation $x^n = 1$, where <i>n</i> is a positive integer satisfying $n \ge 3$. If the solutions are plotted in the Argand plane, and if those solutions are the vertices of a regular polygon whose enclosed area is A_n , find the value of $\lim_{n\to\infty} A_n$.	π	
14	Write in $a + bi$ form: $\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right)^{2014}$	$\frac{\sqrt{3}}{2} - \frac{1}{2}i$	
15	Consider polynomial $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx - 442$ with integral coefficients. <i>f</i> has one real root and four imaginary roots. The product of two of the imaginary roots is $11+10i$. Find the value of the real root of <i>f</i> .	2	

2013 – 2014 Log1 Contest Round 2 Complex Numbers Solutions

Mu	Al	Th	Solution
1	1	1	(-1+i)+(3+5i)-(2-i)=(-1+3-2)+(1+5-(-1))i=7i
2	2	2	(-1+i)(3+5i)(2-i) = (-8-2i)(2-i) = -18+4i
3	3	3	$\frac{6+5i}{-4+16i} = \frac{6+5i}{-4+16i} \cdot \frac{-4-16i}{-4-16i} = \frac{-24-96i-20i+80}{16+256} = \frac{56-116i}{272} = \frac{7}{34} - \frac{29}{68}i$ $\left(\frac{14-29i}{68} \text{ or comparable answer is not in } a+bi \text{ form}\right)$
4	4	4	$\left -65+72i\right =\sqrt{\left(-65\right)^{2}+72^{2}}=\sqrt{4225+5184}=\sqrt{9409}=97$
	5	5	Since a complex number is a number of the form $a+bi$, where a and b are real, all real numbers are complex numbers (just make $b=0$). Since two real numbers' sum is always real, their sum is also always complex.
5			$\cos(i) - i\sin(i) = \cos(-i) + i\sin(-i) = e^{i(-i)} = e^{1} = e^{1}$
6	6	6	The solutions to $x^8 = 1$ are all eighth roots of unity, so each solution's magnitude is 1. Therefore, since there are eight distinct solutions, the sum of the eight solutions' magnitudes is 8.
7	7	7	$\frac{\sqrt{-5} \cdot \sqrt{-15}}{\sqrt{(-5)(-15)}} = \frac{i\sqrt{5} \cdot i\sqrt{15}}{\sqrt{75}} = i^2 = -1$
8	8	8	Because the sum of all roots is $-\frac{12}{1} = -12$, and because one of the roots equals the sum of the other two, one of the roots must be -6 while the other two sum to -6 . Therefore, $0 = (-6)^3 + 12(-6)^2 - 6b + 60 = -6b + 276 \Rightarrow b = 46$. Thus, $x^3 + 12x^2 + 46x + 60 = (x+6)(x^2+6x+10)$, and the other two roots are $\frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} = -3 \pm i$. Of the three roots, the only one with positive imaginary part is $-3 + i$.
		9	$\overline{z \cdot z} = (2-3i)(2+3i) = 4-9i^2 = 4+9=13$
9	9		$-2\operatorname{cis}\left(-\frac{\pi}{3}\right) = -2\left(\operatorname{cos}\left(-\frac{\pi}{3}\right) + i\operatorname{sin}\left(-\frac{\pi}{3}\right)\right) = -2\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1 + \sqrt{3}i$
		10	$\sqrt{(-2-3)^2 + (1-5)^2} = \sqrt{(-5)^2 + (-4)^2} = \sqrt{25+16} = \sqrt{41}$
10	10	11	Since $\frac{1+i}{1-i} = i$, $\frac{(1+i)^{17}}{(1-i)^{16}} = \left(\frac{1+i}{1-i}\right)^{16} (1+i) = i^{16} (1+i) = 1(1+i) = 1+i$.
11	11	12	$\left(\sqrt{3}-i\right)^n = \left(2\operatorname{cis}\left(-30^\circ\right)\right)^n = 2^n \operatorname{cis}\left(-30^\circ n\right), \text{ and this will be real if } -30^\circ n \text{ is coterminal}$ with 0° or 180°. Therefore, <i>n</i> must be a multiple of 6, and the desired sum is $6+12+18++96 = \frac{16}{2}(6+96) = 8\cdot102 = 816.$

	12		In $\{1,-1,i,-i\}$, the reciprocals of the elements are 1, -1 , $-i$, and i , respectively, and the conjugates of these elements are the original elements in the set, respectively. Therefore, no element equals the conjugate of a different element. In actuality, each element's reciprocal is the conjugate of the exact same element.
12	13	13	Using the quadratic formula, $x = \frac{-(1-5i)\pm\sqrt{(1-5i)^2-4i(-1+8i)}}{2i} = \frac{5i-1\pm\sqrt{8-6i}}{2i}$ = $\frac{5i-1\pm(3-i)}{2i}$, and the two solutions are $2-i$ and $3+2i$.
13			The vertices are equally spread on the unit circle, so as $n \to \infty$, the polygon approaches the unit circle, the enclosed area of which is $\pi(1)^2 = \pi$.
14	14	14	$\left(\frac{\sqrt{6}+\sqrt{2}}{4}+\frac{\sqrt{6}-\sqrt{2}}{4}i\right)^{2014} = \left(cis(15^{\circ})\right)^{2014} = cis(2014\cdot15^{\circ}) = cis30210^{\circ} = cis330^{\circ}$ $= \frac{\sqrt{3}}{2} - \frac{1}{2}i$
15	15	15	Since the coefficients of f are integers, the product of the other two roots must be $11-10i$, making the product of all four imaginary roots $(11+10i)(11-10i)=11^2+10^2$ =221. Since the product of all five roots is $-\frac{-442}{1}=442$, the real root must be 2.