- 1. В
- 2. В
- C 3.
- 4. D
- 5. A
- 6. D
- C A 7. 8.
- Е 9.
- 10. B
- 11. A
- 12. C 13. C
- 14. C
- 15. D
- 16. A

- 17. B 18. C 19. C
- 20. C 21. C 22. C 23. E

- 24. E 25. D
- 26. D
- 27. C
- 28. A
- 29. B 30. E

- 1. B $\frac{1}{2}$ mv²=mgh, h= $\frac{1}{2}$ gt², solve for t.
- 2. B AVE Finet is zero by KEf = KEi so the AVE Fplate Fg = 0. Note the interval.
- 3. C The greatest product of x*y will be its final position. It will still be rolling when it reaches that position because there is no friction on the last segment. The rotational kinetic energy will be 1/3 of its total energy since the rotational inertia of a uniform disk is $(1/2)mR^2$ so it will only reach a final height of 2/3. At this height x is 11/3 and x*y is 22/9.
- 4. D $V_0Sin(2*theta)/g$, $V_0 = 50$
- 5. A $r = 1.5R_e$ so $a_g = 10/1.5^2$
- 6. D 40/9*4 = 160/9, then the mass inside is only $(.75)^3$ as much so 160/9*27/64 = 7.5
- 7. C Towards one another
- 8. A m1v1-m2v2=(m1+m2)Vf
- 9. E Mechanical energy is constant so the change is zero.
- 10. B $\frac{1}{2}$ radius $\rightarrow \frac{1}{4}$ I $\rightarrow 4x$ speed $\rightarrow \frac{1}{4}$ time.
- 11. A formula 2pisqrt(1/g)
- 12. C 1/180+1/120 = 1/72. A=.144*10/72=1/50
- 13. C 3rd Law
- 14. C they must all apply the same force by the 3rd law regardless of acceleration
- 15. D 150/(100+50)=1, $1*100-5(1)^2=95$
- 16. A sqrt(2gh) = 5
- 17. B both 3, 4, 5 triangles 4+(-6)=-2
- 18. C negative area under
- 19. C 573-300=273
- 20. C $1-(T_c/T_H)=1-(P_0V_0)/(P_1V_1)=1-(P_0V_0)/(5P_0/8*5V_0/2)=1-16/25=36\%$
- 21. C $g=10=GM_e/r_e^2$, $\frac{2}{5}$ r --> $\frac{8}{125}$ the volume and $\frac{16}{125}$ the mass. $\frac{10*(16/125)}{(4/25)}=8$.
- 22. C $v_a r_a = v_p r_p$ so 29.25x = 13(2a-x) & a=42.25 now use vis viva v = sqrt(GM(2/r-1/a))
- 23. E C+2C = 3C & $(1/(3C)+1/(3C))^{-1}$ is 3C/2
- 24. E y=mLl/d. $2xE-->\frac{1}{2}l \rightarrow \frac{1}{2}y$.
- 25. D 50*1.2/.8
- 26. D The ray that bends farthest away is moving fastest
- 27. C 1/5 + 1/image = 2/20 so image is -10 and virtual (upright) so M is + and 10/5=2
- 28. A -1/20 = 1/10 + 1/x \therefore x=-20/3 and distance is 6 $\frac{2}{3}$ to mirror or 3 $\frac{1}{3}$ from candle
- 29. B max force on top is 40 so net max is 80 but friction on bottom is 80,
- 30. E $(m/2)v^2 = mgL\sin 45 + 1 * mgL\cos 45 L = 45/(sqrt2)$