2012 - 2013 Log1 Contest Round 1 Theta Logs & Exponents

4 points each		
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$	
2	If $2^{6x+1} = 16$, find the value of $\log_2 x$.	
3	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of $f(g(h(j(e^{81}))))$.	
4	Which is larger: $\log_4 130 - \log_4 5$ or $\frac{\log_4 130}{\log_4 5}$?	
5	A circle whose radius has length $\frac{\log_3 27^\pi}{\log_9 27^2}$ encloses what area?	

	5 points each		
6	Solve for $x : \ln(1-x) - \ln(1+x) = 3$		
7	If $f(x) = \log_x(4x)$, find the value of a satisfying $f(a) = 9$.		
8	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.		
9	What is the last name of the mathematician to whom the introduction of logarithms in the early 17th century is generally attributed?		
10	Find the value of x satisfying $(2^{3^4})^2 = 4^{9^x}$.		

	6 points each		
11	Find the value of x satisfying $x^{x^{x^{-}}} = \log_x (\log_x 2)$.		
12	Find the domain of the function $f(x) = \log_4(x^3 - 2x^2 - 9)$, written in interval notation.		
13	If $(4\log_{17} m)(\log_6 17) = 12$, find the value of $\log_{36} \sqrt{m}$.		
14	Find the value of $27^{\log_3 12}$.		
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.		

2012 - 2013 Log1 Contest Round 1 Alpha Logs & Exponents

4 points each		
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$	
2	If $2^{6x+1} = 16$, find the value of $\log_2 x$.	
3	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of a that satisfies $f(g(h(j(a)))) = 0$.	
4	A circle whose radius has length $\frac{\log_3 27^{\pi}}{\log_9 27^2}$ encloses what area?	
5	Solve for $x : \ln(1-x) - \ln(1+x) = 3$	

5 points each		
6	Solve for $x: 16^{x^2} = 2^{3x+1}$	
7	If $f(x) = \log_x(4x)$, find the value of a satisfying $f(a) = 9$.	
8	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.	
9	What is the last name of the mathematician to whom the introduction of logarithms in the early $17^{\rm th}$ century is generally attributed?	
10	Find the value of x satisfying $x^{x^{x^{-}}} = \log_x (\log_x 2)$.	

6 points each		
11	Solve for $x: 4^{16^x} = 16^{4^x}$	
12	Find the domain of the function $f(x) = \log_4(x^3 - 2x^2 - 9)$, written in interval notation.	
13	Solve for positive $x: x^{x^{x+3}} = (x^{81})^{x^2}$	
14	Find the value of $27^{\log_3 12}$.	
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.	

2012 - 2013 Log1 Contest Round 1 Mu Logs & Exponents

	4 points each		
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$		
2	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of a that satisfies $f(g(h(j(a)))) = 0$.		
3	A circle whose radius has length $\frac{\log_3 27^\pi}{\log_9 27^2}$ encloses what area?		
4	Solve for $x : \ln(1-x) - \ln(1+x) = 3$		
5	Find the value of the slope of the tangent to $y = x^x$ at the point (3,27).		

	5 points each		
6	If $f(x) = \log_x(4x)$, where $x > 2$, find the range of f , written in interval notation.		
7	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.		
8	What is the last name of the mathematician to whom the introduction of logarithms in the early $17^{\rm th}$ century is generally attributed?		
9	Find the value of x satisfying $x^{x^{x^{x^{-}}}} = \log_x (\log_x 2)$.		
10	Find the average value of the function $f(x) = x^3$ on the interval [2,4].		

	6 points each		
11	The solution to $4^{32^x} = 32^{4^x}$ is $x = -1 + \log_2 a$, where $a > 0$. Find the value of a^3 .		
12	Find the domain of the function $f(x) = \log_{x^2-5}(x^3+3x^2-4x-12)$, written in interval notation.		
13	Solve for positive $x: x^{x^{x+3}} = (x^{81})^{x^2}$		
14	Find the value of a if $\int_{1}^{2} (\log_2 x) dx = \log_2 a$.		
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.		

2012 – 2013 Log1 Contest Round 1 Theta Logs & Exponents

4 points each		
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$	24
2	If $2^{6x+1} = 16$, find the value of $\log_2 x$.	-1
3	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of $f(g(h(j(e^{81}))))$.	0
4	Which is larger: $\log_4 130 - \log_4 5$ or $\frac{\log_4 130}{\log_4 5}$?	$\frac{\log_4 130}{\log_4 5}$
5	A circle whose radius has length $\frac{\log_3 27^\pi}{\log_9 27^2}$ encloses what area?	π^3

	5 points each		
6	Solve for $x : \ln(1-x) - \ln(1+x) = 3$	$\frac{1-e^3}{1+e^3}$	
7	If $f(x) = \log_x(4x)$, find the value of a satisfying $f(a) = 9$.	∜ 2	
8	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.	0.71534	
9	What is the last name of the mathematician to whom the introduction of logarithms in the early $17^{\rm th}$ century is generally attributed?	Napier	
10	Find the value of x satisfying $\left(2^{3^4}\right)^2 = 4^{9^x}$.	2	

	6 points each		
11	Find the value of x satisfying $x^{x^{x^{x^{-}}}} = \log_x (\log_x 2)$.	$\sqrt{2}$	
12	Find the domain of the function $f(x) = \log_4(x^3 - 2x^2 - 9)$, written in interval notation.	(3,∞)	
13	If $(4\log_{17} m)(\log_6 17) = 12$, find the value of $\log_{36} \sqrt{m}$.	$\frac{3}{4}$	
14	Find the value of $27^{\log_3 12}$.	1728	
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.	3, 4, ±6	

2012 – 2013 Log1 Contest Round 1 Alpha Logs & Exponents

	4 points each		
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$	24	
2	If $2^{6x+1} = 16$, find the value of $\log_2 x$.	-1	
3	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of a that satisfies $f(g(h(j(a)))) = 0$.	e^{81}	
4	A circle whose radius has length $\frac{\log_3 27^{\pi}}{\log_9 27^2}$ encloses what area?	π^3	
5	Solve for $x : \ln(1-x) - \ln(1+x) = 3$	$\frac{1-e^3}{1+e^3}$	

	5 points each		
6	Solve for $x: 16^{x^2} = 2^{3x+1}$	1, $-\frac{1}{4}$	
7	If $f(x) = \log_x(4x)$, find the value of a satisfying $f(a) = 9$.	4 √2	
8	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.	0.71534	
9	What is the last name of the mathematician to whom the introduction of logarithms in the early $17^{\rm th}$ century is generally attributed?	Napier	
10	Find the value of x satisfying $x^{x^{x^{x^{-}}}} = \log_x (\log_x 2)$.	$\sqrt{2}$	

6 points each		
11	Solve for $x: 4^{16^x} = 16^{4^x}$	$\frac{1}{2}$
12	Find the domain of the function $f(x) = \log_4(x^3 - 2x^2 - 9)$, written in interval notation.	(3,∞)
13		1 2
13	Solve for all positive values of $x: x^{x^{x+3}} = (x^{81})^{x^2}$	1, 3
14	Find the value of $27^{\log_3 12}$.	1728
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.	3, 4, ±6

2012 - 2013 Log1 Contest Round 1 Mu Logs & Exponents

	4 points each	
1	Evaluate: $(\log_7 4)(\log_2 125)(\log_5 2401)$	24
2	If $f(x) = \log_5 x$, $g(x) = \log_4 x$, $h(x) = \log_3 x$, and $j(x) = \ln x$, find the value of a that satisfies $f(g(h(j(a)))) = 0$.	$e^{_{81}}$
3	A circle whose radius has length $\frac{\log_3 27^{\pi}}{\log_9 27^2}$ encloses what area?	π^3
4	Solve for $x : \ln(1-x) - \ln(1+x) = 3$	$\frac{1-e^3}{1+e^3}$
5	Find the value of the slope of the tangent to $y = x^x$ at the point (3,27).	27+27ln3

	5 points each		
6	If $f(x) = \log_x(4x)$, where $x > 2$, find the range of f , written in interval notation.	(1,3)	
7	Using $\log 5 = 0.69897$, find the value of $\log_{25} 10$, rounded accurately to five decimal places.	0.71534	
8	What is the last name of the mathematician to whom the introduction of logarithms in the early $17^{\rm th}$ century is generally attributed?	Napier	
9	Find the value of x satisfying $x^{x^{x^{-}}} = \log_x (\log_x 2)$.	$\sqrt{2}$	
10	Find the average value of the function $f(x)=x^3$ on the interval [2,4].	30	

	6 points each	
11	The solution to $4^{32^x} = 32^{4^x}$ is $x = -1 + \log_2 a$, where $a > 0$. Find the value of a^3 .	20
12	Find the domain of the function $f(x) = \log_{x^2-5}(x^3+3x^2-4x-12)$, written in interval	$\left(-3,-\sqrt{6}\right)$
	notation.	$\left(-\sqrt{6},-\sqrt{5}\right)$
		$(-3,-\sqrt{6}) \cup (-\sqrt{6},-\sqrt{5}) \cup (\sqrt{5},\sqrt{6}) \cup (\sqrt{6},\infty)$
		$(\sqrt{6},\infty)$
13	Solve for all positive values of $x: x^{x^{x+3}} = (x^{81})^{x^2}$	1, 3
14	Find the value of a if $\int_{1}^{2} (\log_2 x) dx = \log_2 a$.	$\frac{4}{e}$
15	Find all real values of x such that $(x^2 - 9x + 19)^{x^2 + 2x - 24} = 1$.	3, 4, ±6

2012 - 2013 Log1 Contest Round 1 Logs & Exponents Solutions

Mu	Al	Th	Solution
1	1	1	$(\log_7 4)(\log_2 125)(\log_5 2401) = (\log_2 4)(\log_5 125)(\log_7 2401) = 2 \cdot 3 \cdot 4 = 24$
	2	2	$6x + 1 = 4 \Rightarrow x = \frac{1}{2} \Rightarrow \log_2 \frac{1}{2} = -1$
2	3		$f(g(h(j(a)))) = 0 \Rightarrow g(h(j(a))) = 1 \Rightarrow h(j(a)) = 4 \Rightarrow j(a) = 81 \Rightarrow a = e^{81}$
		3	$f(g(h(j(e^{81})))) = f(g(h(81))) = f(g(4)) = f(1) = 0$
		4	$\log_4 130 - \log_4 5 = \log_4 26 < \log_4 32 = 2.5$ and $\frac{\log_4 130}{\log_4 5} = \log_5 130 > \log_5 125 = 3$, so $\frac{\log_4 130}{\log_4 5}$ is larger.
3	4	5	$\frac{\log_3 27^{\pi}}{\log_9 27^2} = \frac{\pi \log_3 27}{2\log_9 27} = \frac{3\pi}{2(1.5)} = \pi \text{ , so the enclosed area is } \pi(\pi)^2 = \pi^3$
4	5	6	$3 = \ln(1-x) - \ln(1+x) = \ln\frac{1-x}{1+x} \Rightarrow e^3 = \frac{1-x}{1+x} \Rightarrow x(1+e^3) = 1 - e^3 \Rightarrow x = \frac{1-e^3}{1+e^3}$
5			For $y = x^x$, using logarithmic differentiation, $y' = x^x (1 + \ln x)$, so the slope of the tangent at that point is $3^3 (1 + \ln 3) = 27 + 27 \ln 3$.
	6		Since $16=2^4$, $4x^2=3x+1 \Rightarrow 0=4x^2-3x-1=(4x+1)(x-1) \Rightarrow x=1 \text{ or } -\frac{1}{4}$.
6			$\log_{x}(4x) = \frac{\ln 4x}{\ln x} = \frac{\ln 4 + \ln x}{\ln x} = \frac{\ln 4}{\ln x} + 1 = \frac{1}{\log_{4} x} + 1, \text{ and since } \log_{4} x \text{ takes on all values}$ $\left(\frac{1}{2}, \infty\right) \text{ when } x > 2, \frac{1}{\log_{4} x} + 1 \text{ takes on all values} \left(0 + 1, \frac{1}{\frac{1}{2}} + 1\right) = (1,3).$
	7	7	$9 = \log_{x} (4x) = \frac{\ln 4x}{\ln x} = \frac{\ln 4 + \ln x}{\ln x} = \frac{\ln 4}{\ln x} + 1 = \frac{1}{\log_{4} x} + 1 \Rightarrow \log_{4} x = \frac{1}{8} \Rightarrow x = \sqrt[8]{4} = \sqrt[4]{2}$
7	8	8	$\log_{25} 10 = \frac{1}{\log 25} = \frac{1}{2\log 5} = \frac{1}{2(0.69897)} = \frac{1}{1.39794} = 0.715338$, so rounded to five decimal places, the value would be 0.71534 .
8	9	9	John Napier is generally credited with the introduction of logarithms in the early 1600s.
		10	$2^{2(9^{x})} = (2^{2})^{9^{x}} = 4^{9^{x}} = (2^{3^{4}})^{2} = (2^{2})^{3^{4}} = 2^{2(3^{4})} \Rightarrow 9^{x} = 3^{4} = 81 \Rightarrow x = 2$

9	10	11	
			Using the definition of logs, $x^{\left(x^{x^{x^{x^{-}}}}\right)} = \log_{x} 2 \Rightarrow 2 = x^{\left(x^{(x^{-})}\right)} = x^{x^{x^{x^{-}}}} = x^{2} \Rightarrow x = \sqrt{2}$ since $x > 0$
10			The average value is $\frac{1}{4-2} \int_{2}^{4} x^{3} dx = \frac{1}{2} \left(\frac{1}{4} x^{4} \right) \Big _{2}^{4} = \frac{1}{8} \left(4^{4} - 2^{4} \right) = \frac{1}{8} \left(256 - 16 \right) = \frac{1}{8} \left(240 \right) = 30$.
	11		$4^{\left(4^{x}\right)^{2}} = 4^{16^{x}} = 16^{4^{x}} = \left(4^{2}\right)^{4^{x}} = 4^{2\left(4^{x}\right)} \Longrightarrow \left(4^{x}\right)^{2} = 2\left(4^{x}\right), \text{ and since } 4^{x} \neq 0, \ 4^{x} = 2 \Longrightarrow x = \frac{1}{2}.$
11			$2^{2\left(2^{x}\right)^{5}} = \left(2^{2}\right)^{\left(2^{x}\right)^{5}} = 4^{32^{x}} = 32^{4^{x}} = \left(2^{5}\right)^{\left(2^{x}\right)^{2}} = 2^{5\left(2^{x}\right)^{2}} \Rightarrow 2\left(2^{x}\right)^{5} = 5\left(2^{x}\right)^{2}, \text{ and since } 2^{x} \neq 0,$
			$(2^{x})^{3} = \frac{5}{2} \Rightarrow 2^{x} = \sqrt[3]{\frac{5}{2}} = \frac{\sqrt[3]{20}}{2} \Rightarrow x = \log_{2} \frac{\sqrt[3]{20}}{2} = \log_{2} \sqrt[3]{20} - \log_{2} 2 = -1 + \log_{2} \sqrt[3]{20}, \text{ so}$ $a = \sqrt[3]{20} \Rightarrow a^{3} = 20.$
	12	12	$\log_4(x^3-2x^2-9) = \log_4((x-3)(x^2+x+3))$, and since $x^2+x+3>0$ for all real x, we
			simply need $x-3>0 \Rightarrow x>3$, so the answer in interval notation is $(3,\infty)$.
12			For the base, we must have $x^2 - 5 > 0$ and $x^2 - 5 \neq 1$, so x is in $\left(-\infty, -\sqrt{6}\right) \cup \left(-\sqrt{6}, -\sqrt{5}\right)$
			$\cup (\sqrt{5}, \sqrt{6}) \cup (\sqrt{6}, \infty)$. For the argument of the log, $x^3 + 3x^2 - 4x - 12 = (x+3)(x-2)$
			$(x+2)>0$, so x is in $(-3,-2)\cup(2,\infty)$. The intersection of these intervals is
			$(-3,-\sqrt{6})\cup(-\sqrt{6},-\sqrt{5})\cup(\sqrt{5},\sqrt{6})\cup(\sqrt{6},\infty).$
		13	$12 = (4\log_{17} m)(\log_6 17) = 4\log_6 m \Rightarrow \log_6 m = 3 \Rightarrow m = 6^3 = 216, \log_{36} \sqrt{216} = \log_{6^2} 6^{\frac{3}{2}}$ $= \log_6 6^{\frac{3}{4}} = \frac{3}{4}$
13	13		Since $x \ne 0$, $x^{x^{x+3}} = (x^{81})^{x^2} = x^{81x^2} \Rightarrow 81x^2 = x^{x+3} = x^x x^3 \Rightarrow 81 = x^x x = x^{x+1}$, and by
			inspection, $x=3$. This works by taking \log_x of both sides, which you can only do if $x \ne 1$. By checking $x=1$ separately, it is easy to verify that that is also a solution.
	14	14	$27^{\log_3 12} = 12^{\log_3 27} = 12^3 = 1728$
14			$\int_{1}^{2} (\log_{2} x) dx = \frac{1}{\ln 2} \int_{1}^{2} (\ln x) dx = \frac{1}{\ln 2} (x \ln x - x) \Big _{1}^{2} = \frac{(2 \ln 2 - 2) - (1 \ln 1 - 1)}{\ln 2} = \frac{2 \ln 2 - 1}{\ln 2}$
			$= \frac{\ln 4 - \ln e}{\ln 2} = \frac{\ln \frac{4}{e}}{\ln 2} = \log_2 \frac{4}{e}, \text{ so } a = \frac{4}{e}$

15	15	15	$(x^2-9x+19)^{x^2+2x-24} = 1$ in three ways: the exponent is 0 and the base isn't, the base is
			1, or the base is -1 and the exponent is even. For the first case, $0 = x^2 + 2x - 24$
			$=(x+6)(x-4) \Rightarrow x = -6 \text{ or } x = 4$, neither of which make the base 0. For the second
			case, $1 = x^2 - 9x + 19 \Rightarrow 0 = x^2 - 9x + 18 = (x - 3)(x - 6) \Rightarrow x = 3 \text{ or } x = 6$. For the third
			case, the exponent is even only if x is, and $-1 = x^2 - 9x + 19 \Rightarrow 0 = x^2 - 9x + 20$
			$=(x-4)(x-5) \Rightarrow x=4 \text{ or } x=5$, so only $x=4$ works in this case. Therefore, the
			solutions are 3, 4, 6, and -6 .