2009 - 2010 Log1 Contest Round 1 Theta Logs and Exponents

Name: _____

	4 points each		
1	A population of lions quadruples every month. If the initial population of the lions was		
	50, what is the population after 2 months?		
2	Simplify and express as a fraction: $(27^{-2/3}) + (\log_2 8)$.		
3	My great-great-grandfather is $\frac{3}{4}$ Norwegian Buffalo Stomper. Assuming that no one		
	else in my family has any Norwegian Buffalo Stomper heritage, what fraction		
	Norwegian Buffalo Stomper am I?		
4	Evaluate: log(log1000000000)		
5	Let $a = \log 5$ and $b = \log 3$. Write $\log 16.2$ in terms of a and b.		

	5 points each		
6	Evaluate: log ₁₆ 36 – log ₁₆ 9		
7	Solve for x: $3^{\log 5} = x^{\log 3}$.		
8	The First National Bank of Pythagoras was offering a special compounding rate for		
	all new customers. Suppose Elliot has \$1000 and invests in an account that pays 50%		
	interest compounded annually. How much money does he have at the end of 2 years?		
9	r and s are rational numbers and $6^{r}9^{s} = 648$. What is s?		
10	The number of aardvarks varies jointly with the \log_2 of the number of bears and the		
	\log_3 of the number of cats. When there are 16 bears and 3 cats, there are 16		
	aardvarks. How many bears are there if there are 27 cats and 12 aardvarks?		

	6 points each		
11	Solve: log ₂ (64!) – log ₂ (63!)		
12	If $(i^{46})(i^{101}) + 3i^{39} - i^{2035} = a + bi$, where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, what is $a + b$?		
13	Evaluate: $\ln(\ln e^{4e^4})$		
14	Evaluate b if $(3\log_a b)(\log_7 a) = 9$.		
15	Solve for x: $\frac{1}{\log_4 x} + \frac{1}{\log_8 x} + \frac{1}{\log_{16} x} = 3$		

2009 - 2010Log1 Contest Round 1 Alpha Logs and Exponents

Name: _____

	4 points each		
1	A population of lions quadruples every month. If the initial population of the lions was		
	50, what is the population after 2 months?		
2	Simplify and express as a fraction: $(27^{-2/3}) + (\log_2 8)$.		
3	My great-great-grandfather is $\frac{3}{4}$ Norwegian Buffalo Stomper. Assuming that no one		
	else in my family has any Norwegian Buffalo Stomper heritage, what fraction		
	Norwegian Buttalo Stomper am 1?		
4	Solve for x: log ₈ (log ₂ (log ₃ (log ₂ x))) = 0		
5	Let $a = \log 5$ and $b = \log 3$. Write $\log 16.2$ in terms of a and b.		

	5 points each		
6	Evaluate: log ₁₆ 36 – log ₁₆ 9		
7	Solve for x: $x^{x^{x^{x}}} = 3$		
8	The First National Bank of Pythagoras was offering a special compounding rate for		
	all new customers. Suppose Elliot has \$1000 and invests in an account that pays 50%		
	interest compounded annually. How much money does he have at the end of 2 years?		
9	r and s are rational numbers and $6^r 9^s = 648$. What is s?		
10	The number of aardvarks varies jointly with the log ₂ of the number of bears and the		
	\log_3 of the number of cats. When there are 16 bears and 3 cats, there are 16		
	aardvarks. How many bears are there if there are 27 cats and 12 aardvarks?		

6 points each		
11	Solve: log2(64!)—log2(63!)	
12	If $(i^{46})(i^{101}) + 3i^{39} - i^{2035} = a + bi$, where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, what is $a + b$?	
13	Evaluate: $\ln(\ln e^{4e^4})$	
14	Evaluate b if $(3\log_a b)(\log_7 a) = 9$.	
15	Find the sum of the distinct values of x, if: $\frac{e^{2x^3}(e^{-3x^2})}{e^{17x}(e^{12})} = 1$	

2009 – 2010Log1 Contest Round 1 Mu Logs and Exponents

Name: _____

	4 points each		
1	A population of lions quadruples every month. If the initial population of the lions was		
	50, what is the population after 2 months?		
2	Simplify and express as a fraction: $(27^{-2/3}) + (\log_2 8)$.		
3	My great-great-grandfather is $\frac{3}{4}$ Norwegian Buffalo Stomper. Assuming that no one else in my family has any Norwegian Buffalo Stomper heritage, what fraction Norwegian Buffalo Stomper am I?		
4	Solve for x: log ₈ (log ₂ (log ₃ (log ₂ x))) = 0		
5	Let $a = \log 5$ and $b = \log 3$. Write $\log 16.2$ in terms of a and b.		

	5 points each		
6	Evaluate: log ₁₆ 36 – log ₁₆ 9		
7	x x ^x		
	Solve for x: $x^{x^{n}} = 3$		
8	The First National Bank of Pythagoras was offering a special compounding rate for		
	all new customers. Suppose Elliot has \$1000 and invests in an account that pays 50%		
	interest compounded annually. How much money does he have at the end of 2 years?		
9	Evaluate: $\frac{d}{dx}(x \log_2 x)$		
10	The number of aardvarks varies jointly with the log ₂ of the number of bears and the		
	\log_3 of the number of cats. When there are 16 bears and 3 cats, there are 16		
	aardvarks. How many bears are there if there are 27 cats and 12 aardvarks?		

	6 points each		
11	Solve: log ₂ (64!) – log ₂ (63!)		
12	If $(i^{46})(i^{101}) + 3i^{39} - i^{2035} = a + bi$, where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, what is $a + b$?		
13	Evaluate: $\ln(\ln e^{4e^4})$		
14	Find the sum of the distinct values of x, if: $\frac{e^{2x^3}(e^{-3x^2})}{e^{17x}(e^{12})} = 1$		
15	If $3^{x_1} = 6$, $6^{x_2} = 9$, $9^{x_3} = 12 \dots 726^{x_{242}} = 729$, then what is $x_1 x_2 x_3 x_4 \dots x_{242}$?		

2009 – 2010Log1 Contest Round 1 Logs and Exponents Answers

Theta Answers	
1	800
2	28 9
3	$\frac{3}{64}$
4	1
5	4 <i>b</i> – a
6	$\frac{1}{2}$
7	x= 5
8	\$2250
9	s = 1/2
10	2
11	6
12	-3
13	4 + ln 4
14	343
15	8

Alpha Answers	
1	800
2	<u>28</u> 9
3	<u>3</u> 64
4	512
5	4 <i>b</i> – a
6	$\frac{1}{2}$
7	$3^{\frac{1}{3}}$ or $\sqrt[3]{3}$
8	\$2250
9	s = 1/2
10	2
11	6
12	-3
13	4 + ln 4
14	343
15	$\frac{3}{2}$

Mu Answers	
1	800
2	<u>28</u> 9
3	$\frac{3}{64}$
4	512
5	4b – a
6	$\frac{1}{2}$
7	3 ^{1/3} or ∛3
8	\$2250
9	$\log_2 x + \frac{1}{\ln 2}$
10	2
11	6
12	-3
13	4 + ln 4
14	$\frac{3}{2}$
15	6

2009 - 2010Log1 Contest Round 1 Logs and Exponents Solutions

Mu	Al	Th	Solution
1	1	1	Population is equal to $50(4^{t})$
			So to find the population after 2 months just substitute 2 for <i>t</i> to get 800.
2	2	2	27 ^{-2/3} can be simplified to:
			$(3^3)^{-2/3} = (3)^{-2} = \frac{1}{2}$
			y log-8 - 3 To get the answer simply add the two results:
			1 28
			$\frac{-}{9} + 3 = \frac{-}{9}$
3	3	3	Great Great Grandpa = $\frac{3}{4}$
			Great Grandpa = $\frac{3}{8}$
			$Grandpa = \frac{1}{16}$
			Parent = $\frac{3}{22}$
			$Me = \frac{1}{64}$
4	4		$\log_8(\log_2(\log_3(\log_2 x))) = 0$
			$\log_2(\log_3(\log_2 x)) = 8^0 = 1$
			$\log_3(\log_2 x) = 2^1 = 2$
			$\log_2 x = 3^2 = 9$
			$x = 2^9 = 512$
		4	The 1 is followed by ten 0's, thus it can be rewritten as 10^{10} .
			log(log10 ¹⁰) = log10 = 1
5	5	5	$16.2 = \frac{81}{2} = \frac{3^4}{2}$
			5 5 2 ⁴
			$\log(\frac{3}{5}) = \log 3^4 - \log 5$
			= 4log3-log5
			= 4b - a
6	6	6	Since the quotient of two logs is the difference of the logs:
			$\log_{16} 36 - \log_{16} 9 = \log_{16}(\frac{33}{9})$
			$= \log_{16} 4$
			$=\frac{1}{2}$
7	7		
			$x^{x^{**}} = 3$
			$x^3 = 3$
			$x = 3^{\frac{1}{3}}, \sqrt[3]{3}$
L		1	· ·

		7	$3^{\log 5} = x^{\log 3}$
			$log(3^{\log 5}) = log(x^{\log 3})$
			$(\log 5)(\log 3) = (\log 3)(\log x)$
			x = 5
8	8	8	To determine the solution you would use the following equation: $A = P(1 + \frac{r}{n})^{nt}$
			Substitute the appropriate values to get:
			$A = P(1 + \frac{.5}{1})^2 = 1000(1.5)^2 = 1000(2.25) = 2250$
	٥	٥	$xros 2r2r2^{2s} 2r2r+2s x x 2^{3}24$
	7	9	$6^{\circ}9^{\circ} = 2^{\circ}3^{\circ}3^{\circ} = 2^{\circ}3^{\circ} = 648 = 2^{\circ}3^{\circ}$ r=3, s=1/2.
9			$\frac{d}{dx}(x\log_2 x) = \log_2 x + x\frac{d}{dx}\left(\frac{\ln x}{\ln 2}\right) = \log_2 x + \frac{1}{\ln 2}$
10	10	10	a = k log2 (b) log3(c). 16 = k log2 (16) log3 (3) = 4k. Therefore k = 4. Then, 12 = 4 log2 (b) log3 (27) = 4(3) log2 (b). Therefore log2(b) = 1 and b=2
11	11	11	$\frac{64!}{$
12	12	12	1 hus answer is 6
12	12	12	$1^{10} = -1$
			$3i^{39} = 3(-i)$
			$i^{2035} = -i$
			$\therefore (-1)(i) + (-3i) - (-i) = -3i + 0$
			b = -3, a = 0
			a + b = (-3) + (0) = -3
13	13	13	Starting in the parentheses:
			$\ln e^{4e^4} = 4e^4$
			Because the log of a product is the sum of the logs:
			$\ln(4e^4) = \ln 4 + \ln e^4$
			$= 4 + \ln 4$
	14	14	$(3\log_a b)(\log_7 a) = 9$
			By change of base:
			$\frac{\log b^3}{\log a} \cdot \frac{\log a}{\log 7} = 9$
			$\log b^3$
			$\frac{1}{\log 7} = 9$
			$b^3 = 7^9$
			$b = 7^3 = 343$

		15	$\frac{1}{\log_4 x} + \frac{1}{\log_8 x} + \frac{1}{\log_{16} x} = 3$ By changing the bases: $\frac{\log 4 + \log 8 + \log 16}{\log x} = 3$ Because the sum of the logs is the log of the products: $\log(4(8)(16)) = 3\log x$ $\log 512 = \log x^3$ $x^3 = 512$ x = 8
14	15		$\frac{e^{2x^{3}}(e^{-3x^{2}})}{e^{17x}(e^{12})} = 1$ $= \frac{e^{2x^{3}-3x^{2}}}{e^{17x+12}} = 1$ $2x^{3} - 3x^{2} = 17x + 12$ $2x^{3} - 3x^{2} - 17x - 12 = 0$ Sum of roots = $-\frac{b}{a}$ $= \frac{3}{2}$
15			$3^{x_{1}} = 6$ $6^{x_{2}} = 9$ $\log 3^{x_{1}} = \log 6$ $\log 6^{x_{2}} = \log 9$ $x_{1} \log 3 = \log 6$ $x_{2} \log 6 = \log 9$ $x_{1} = \frac{\log 6}{\log 3}$ $x_{2} = \frac{\log 9}{\log 6}$ $9^{x_{3}} = 12$ $12^{x_{4}} = 15$ $\log 9^{x_{3}} = \log 12$ $\log 12^{x_{4}} = \log 15$ $x_{3} \log 9 = \log 12$ $x_{4} \log 12 = \log 15$ $x_{3} = \frac{\log 12}{\log 9}$ $x_{4} = \frac{\log 15}{\log 12}$ From this we can see that by multiplying out all of the terms, everything will cancel out except for log3 (the denominator) and log729 (the numerator). Solving the resulting fraction: $\frac{\log 729}{\log 3} = \log_{3} 729$ $= 6$